42 research outputs found

    Social, Structural and Behavioral Determinants of Overall Health Status in a Cohort of Homeless and Unstably Housed HIV-Infected Men

    Get PDF
    Background: Previous studies indicate multiple influences on the overall health of HIV-infected persons; however, few assess and rank longitudinal changes in social and structural barriers that are disproportionately found in impoverished populations. We empirically ranked factors that longitudinally impact the overall health status of HIV-infected homeless and unstably housed men. Methods and Findings: Between 2002 and 2008, a cohort of 288 HIV+ homeless and unstably housed men was recruited and followed over time. The population was 60 % non-Caucasian and the median age was 41 years; 67 % of study participants reported recent drug use and 20 % reported recent homelessness. At baseline, the median CD4 cell count was 349 cells/ml and 18 % of eligible persons (CD4,350) took antiretroviral therapy (ART). Marginal structural models were used to estimate the population-level effects of behavioral, social, and structural factors on overall physical and mental health status (measured by the SF-36), and targeted variable importance (tVIM) was used to empirically rank factors by their influence. After adjusting for confounding, and in order of their influence, the three factors with the strongest negative effects on physical health were unmet subsistence needs, Caucasian race, and no reported source of instrumental support. The three factors with the strongest negative effects on mental health were unmet subsistence needs, not having a close friend/confidant, and drug use. ART adherence.90 % ranked 5th for its positive influence on mental health, and viral loa

    On the way to large-scale and high-resolution brain-chip interfacing

    Get PDF
    Brain-chip-interfaces (BCHIs) are hybrid entities where chips and nerve cells establish a close physical interaction allowing the transfer of information in one or both directions. Typical examples are represented by multi-site-recording chips interfaced to cultured neurons, cultured/acute brain slices, or implanted “in vivo”. This paper provides an overview on recent achievements in our laboratory in the field of BCHIs leading to enhancement of signals transmission from nerve cells to chip or from chip to nerve cells with an emphasis on in vivo interfacing, either in terms of signal-to-noise ratio or of spatiotemporal resolution. Oxide-insulated chips featuring large-scale and high-resolution arrays of stimulation and recording elements are presented as a promising technology for high spatiotemporal resolution interfacing, as recently demonstrated by recordings obtained from hippocampal slices and brain cortex in implanted animals. Finally, we report on an automated tool for processing and analysis of acquired signals by BCHIs

    Robust penetrating microelectrodes for neural interfaces realized by titanium micromachining

    Get PDF
    Neural prosthetic interfaces based upon penetrating microelectrode devices have broadened our understanding of the brain and have shown promise for restoring neurological functions lost to disease, stroke, or injury. However, the eventual viability of such devices for use in the treatment of neurological dysfunction may be ultimately constrained by the intrinsic brittleness of silicon, the material most commonly used for manufacture of penetrating microelectrodes. This brittleness creates predisposition for catastrophic fracture, which may adversely affect the reliability and safety of such devices, due to potential for fragmentation within the brain. Herein, we report the development of titanium-based penetrating microelectrodes that seek to address this potential future limitation. Titanium provides advantage relative to silicon due to its superior fracture toughness, which affords potential for creation of robust devices that are resistant to catastrophic failure. Realization of these devices is enabled by recently developed techniques which provide opportunity for fabrication of high-aspect-ratio micromechanical structures in bulk titanium substrates. Details are presented regarding the design, fabrication, mechanical testing, in vitro functional characterization, and preliminary in vivo testing of devices intended for acute recording in rat auditory cortex and thalamus, both independently and simultaneously

    Analyzing neural data at huge scale

    No full text

    Implant size and fixation mode strongly influence tissue reactions in the CNS

    Get PDF
    The function of chronic brain machine interfaces depends on stable electrical contact between neurons and electrodes. A key step in the development of interfaces is therefore to identify implant configurations that minimize adverse long-term tissue reactions. To this end, we here characterized the separate and combined effects of implant size and fixation mode at 6 and 12 weeks post implantation in rat (n = 24) cerebral cortex. Neurons and activated microglia and astrocytes were visualized using NeuN, ED1 and GFAP immunofluorescence microscopy, respectively. The contributions of individual experimental variables to the tissue response were quantified. Implants tethered to the skull caused larger tissue reactions than un-tethered implants. Small diameter (50 mu m) implants elicited smaller tissue reactions and resulted in the survival of larger numbers of neurons than did large diameter (200 mu m) implants. In addition, tethering resulted in an oval-shaped cavity, with a cross-section area larger than that of the implant itself, and in marked changes in morphology and organization of neurons in the region closest to the tissue interface. Most importantly, for implants that were both large diameter and tethered, glia activation was still ongoing 12 weeks after implantation, as indicated by an increase in GFAP staining between week 6 and 12, while this pattern was not observed for un-tethered, small diameter implants. Our findings therefore clearly indicate that the combined small diameter, un-tethered implants cause the smallest tissue reactions
    corecore